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Abstract Piles subjected to lateral loading can

create problems in soil-structure interaction. Several

differing methods of analysis have been proposed to

solve the problem of laterally loaded piles, resulting in

the determination of pile bending and the bending

moment as a function of depth below soil surface.

These piles are widely used to support laterally loaded

piles, such as bridge pillars, offshore platforms,

communication towers and others. This study presents

an analytical solution to Miche’s problem as a

continuous function of depth: deflection and moment,

as well as a dimensional plots to be used in projects

involving piles subjected to laterally loading only

including data concerning laterally loading test and

pile geometry. A new formula is presented to calculate

the pile head displacement as well as an equation to

determine maximum moment for a generalized Miche

model and further analysis. In addition, this paper

proposes an equation for the determination of constant

horizontal subgrade reaction ðnhÞ based on the CPT in-

situ test and the geometric characteristics of the pile.

Calibration of the analytical model showed good fit

and conservative results regarding inclinometer data

from an bored pile and good agreement with the

literature results.

Keywords Analytical model � Laterally-loaded

pile � Full-scale tests � Hypergeometric functions

1 Introduction

Piles subjected to lateral loading can create problems

in soil-structure interaction. These piles are widely

used to support laterally loaded structures such as

bridge pillars, offshore platforms, communication

towers, harbor piers, etc. Several methods, such as

the constant horizontal subgrade reaction, the p–y are

typically not capitalized, finite difference, finite ele-

ments, boundary and energetic elements have been

proposed to solve the problem of a laterally loaded

pile, whose problem can generally be defined as the

determination of pile bending and the bending

moment as a function of depth below the soil surface.

In projects including laterally loaded piles, the deter-

mination of pile displacement plot along its depth by

analytical methods, the displacement formula, as well

as maximum deflection and maximum moment are

challenging problems for geotechnical engineers. The

fourth-order differential equation for top-loaded lat-

eral-loading problems was first solved and numeri-

cally determined by Miche (1930), but the function

that determines deflection and pile moment with depth

was not clarified. It is generally possible to enumerate

the commonly used mathematical methods for solving
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the laterally loaded monopile problem: (i) soil reaction

coefficient method: Hetenyi (1946), Miche (1930),

Reese and Matlock (1960), Liang et al. (2014). (ii)

curve methods: P-Y: Matlock (1970); Welch and

Reese (1972); Reese et al. (1974), Reese and Welch

(1975); Reese and Nyman (1978); API (2000), (iii)

Poulos (1971a, b), Verruijt and Kooijman (1989),

Zhang et al. (2000), (iv) finite element method:

Banerjee and Davies (1978), Budhu and Davies

(1988) and Ai et al. (2013), (v) boundary element

method: Banerjee and Davies (1978), Budhu and

Davies (1988) and Ai et al. (2013), (vi) variational or

potential energy method: Sun (1994), Shen and Teh

(2002), Basu et al. (2009), Salgado et al. (2014) and

Gupta and Basu (2017). The equation numerically

solved by Miche (1930) does not include the functions

required to determine dislocation at any point along

the depth. Froio and Rizzi (2017) present a parametric

analytical form for the ordinary differential equation

of an Euler–Bernoulli beam on Winkler’s elastic

foundation, explaining hypergeometric functions and

their properties. Liang et al. (2014) obtained a

simplified analytical solution for laterally loaded long

piles in a soil with reaction coefficient increasing

linearly according to depth by means of the Fourier–

Laplace integral transform and, by using a power

series, crafted a solution for small depths, through the

use of asymptotic Wentzel–Kramers–Brillouin

(WKB) expansion. No analytical solution was identi-

fied in the literature for this closed form of Miche’s

problem (1930), since the general solution is given in

terms of generalized Erdélyi (1955) hypergeometric

functions. Miche’s model (1930) was compared with

the experimental work by Albuquerque et al. (2019),

who performed lateral loading testing belled caisson

with the inclinometer measuring along the depth of

D ¼ 800 mm and length L ¼ 9 m, reaching a good

agreement of experimental data. In this paper, was

determine the solution of the differential equation in

its analytical form, as well as the displacement and

moment functions to be used in designing deep

foundations by piles subjected to lateral loading. The

analytical solution will be compared with Miche’s

numerical solution (1930), literature results, displace-

ment measurements of lateral loading tests, and

inclinometer measuring. The result is the proposal of

an equation used to determine displacement, the

moment along the depth and at the top, the equations

used to determine the maximum moments for various

variation laws of the constant horizontal subgrade

reaction, and a fractional model to solve the problem.

This study will be calibrated by means of an analytical

equation with use of a laterally loading test, with

inclinometer measurements along the pile length,

which are bored pile type with D ¼ 300 mm and

length L ¼ 5 m, in the Experimental Site of Founda-

tions University of Campinas, São Paulo State, Brazil.

2 The Miche Model

Miche (1930) was one of the first to solve the problem

of the laterally loaded pile at the top, with the constant

horizontal subgrade reaction increasing linearly with

depth, assuming the Winkler hypothesis and consid-

ering the free top with the load applied to the surface

(Fig. 1). The differential equation for the Miche model

is provided as:

EpIp
d4y

dz4
þ nhzy ¼ 0; ð1Þ

where Ep ¼ pile elasticity modulus, Ip ¼ pile moment

of inertia, nh ¼ proportional constant for horizontal

subgrade reaction with depth, y ¼ pile lateral deflec-

tion with respect to vertical axis z.

For the solution of Eq. (1) the relative stiffness

factor T was defined by, Van Impe and Reese (2010)

of pile for this problem, as:

Fig. 1 Laterally loaded top pile
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T ¼
ffiffiffiffiffiffiffiffiffi

EpIp
nh

5

r

: ð2Þ

And for practical design issues, b is defined as the

inverse of the relative stiffness factor of pile, ie b ¼ 1
T.

The analytical solution of differential Eq. (1) is

made by a power series in terms of the Erdélyi (1955)

generalized hypergeometric functions, which are

defined as follows:

pFqða1; a2; . . .; aq; b1; b2; . . .; bp; zÞ ¼
X

1

n¼1

Qp
j¼1ðajÞn

Qq
j¼1ðbjÞn

zn

n!

ð3Þ

where in the aj numbers are called parameters the

numerator p, the bj numbers are referred to as

parameters of denominator q and ðaÞn indicates the

Pochhammer symbol, defined as:

ðajÞn ¼ ajðaj þ 1Þ � � � ðaj þ n� 1Þ ¼ Cðaj þ nÞ
CðajÞ

ð4Þ

and CðzÞ is the gamma function.

Equation (1) is a homogeneous linear ordinary

differential equation, and its solution is made with a

linear combination of four linearly-independent func-

tions King et al. (2003). The general solution of

Eq. (1) is provided in:

yðzÞ ¼ a0y1ðzÞ þ a1y2ðzÞ þ a2y3ðzÞ þ a3y4ðzÞ ð5Þ

where a0, a1, a2 and a3 are constants to be determined

according to the boundary conditions of the problem,

and yi with i ¼ 1; 2; 3; 4 are linearly independent

solutions Oliveira and Tygel (2005). The analytical

solution of this equation is provided by the high order

equation power series method proposed by Robin

(2014), knowing that z0 ¼ 0 is an ordinary point

Eq. (1), its solution in the following form:

yðzÞ ¼
X

1

n¼0

anz
n ð6Þ

where an are the coefficients of the power series to be

determined. This Taylor series solution can be rewrit-

ten in the form of generalized hypergeometric func-

tions, that is, as follows:

y½z� ¼ a0 0F3 ;
2

5
;
3

5
;
4

5
;� 1

625
z5b5

� �

þ a1z5
�4=5b 0F3 ;

3

5
;
4

5
;
6

5
;� 1

625
z5b5

� �

þ a2z
25�8=5b2

0F3 ;
4

5
;
6

5
;
7

5
;� 1

625
z5b5

� �

þ a3z
35�12=5b3

0F3 ;
6

5
;
7

5
;
8

5
;� 1

625
z5b5

� �

ð7Þ

where a0, a1, a2 and a3 are the constants to be

determined in accordance with the pile boundary

conditions, and b is inverse relative stiffness factor.

This is Miche’s analytical formula. For situation

b ¼ 1, the generalized hypergeometric functions are

represented in Fig. 2.

In order to determine the analytical solution of the

Miche (1930) problem, the following boundary con-

ditions apply:

1. At the top of the pile:

y000½0� ¼ H

EpIp
; y00½0� ¼ 0 ð8Þ

2. At the base of the pile:

(a) condition 01;

y0½L� ¼ 0; y½L� ¼ 0 ð9Þ

(b) condition 02;

y00½L� ¼ 0; y000½0� ¼ 0 ð10Þ

The main problem with lateral loading is the determi-

nation of the displacement and moment functions

along the depth of the pile when top loading is applied.

Thus, the determination of displacement at the load

application site, the maximum moments and where it

is located in relation to the soil surface can be made

explicit. Given the lateral loading H at the top of the

pile ðz ¼ 0Þ and the boundary conditions are provided

by Eqs. (8) and (9); the analytical solution of the

displacement function along the pile depth, the

moment function along depth, and its maximum

points can be determined. Taking into account the

general analytical solution of Miche (1930) problem is

provided by Eq. (7), with the boundary conditions

provided in Eqs. (8) and (10), by replacing these
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conditions and solving the system of equations, the

values for a0, a1, a2 and a3 are acquired with use of

Eqs. (11)–(14).

ao ¼
�H

EPIp

�
�2016L3A � B� 14L8b5B � F þ 3L8b5D � A
� �

84 72A � E þ 3L5b5A � C � L5b5E � F
� �

ð11Þ

a1 ¼ �H

EPIp

�
1008L2E � Bþ 14L7b5B � C � L7b5D � E
� �

28b 72A � E þ 3L5b5A � C � L5b5E � F
� �

ð12Þ

a2 ¼ 0 ð13Þ

a3 ¼ H

6b3EPIp
ð14Þ

The functions A, B, C, D, E and F, are provided by the

Eq. (15):

A½L; b� ¼0 F3 ;
3

5
;
4

5
;
6

5
;� 1

625
b5L5

� �

;

B½L; b� ¼0 F3 ;
6

5
;
7

5
;
8

5
;� 1

625
b5L5

� �

;

C½L; b� ¼0 F3 ;
7

5
;
8

5
;
9

5
;� 1

625
b5L5

� �

;

D½L; b� ¼ 0F3 ;
11

5
;
12

5
;
13

5
;� 1

625
b5L5

� �

;

E½L; b� ¼0 F3 ;
2

5
;
3

5
;
4

5
;� 1

625
b5L5

� �

;

F½L; b� ¼0 F3 ;
8

5
;
9

5
;
11

5
;� 1

625
b5L5

� �

;

ð15Þ

The exact analytical displacement function solution to

the Miche (1930) problem is provided by Eq. (16):

y½z� ¼ �H

EPIp

�2016L3A � B� 14L8b5B � F þ 3L8b5D � A
� �

84 72A � E þ 3L5b5A � C � L5b5E � F
� �

�0 F3 ;
2

5
;
3

5
;
4

5
;� 1

625
z5b5

� �

þ z5�4=5b
�H

EPIp

1008L2E � Bþ 14L7b5B � C � L7b5D � E
� �

28b 72A � E þ 3L5b5A � C � L5b5E � F
� �

0F3 ;
3

5
;
4

5
;
6

5
;� 1

625
z5b5

� �

þ z35�12=5b3 H

6b3EPIp
0 F3 ;

6

5
;
7

5
;
8

5
;� 1

625
z5b5

� �

ð16Þ

The top displacement of the pile when the load is

applied at this point ðz ¼ 0Þ is provided by Eq. (13),

Miche (1930):

Fig. 2 Generalized

hypergeometric functions,

b ¼ 1
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y½0� ¼ 2:4
HT3

EpIp
: ð17Þ

Equation (17) does not depend on pile length along the

depth, but for the exact analytical model, we have the

influence of pile length on top displacement, since if

z ¼ 0 in Eq. (16), then:

y½0� ¼ �H

EPIp
�
�2016L3A � B� 14L8b5B � F þ 3L8b5D � A
� �

84 72A � E þ 3L5b5A � C � L5b5E � F
� �

ð18Þ

where functions A, B, C, D, E and F are provided by

Eq. (15). The moment function is calculated by the

second derivative of the displacement function in

Eq. (19).

M½z� ¼ EpIp
d2y

dz2
ð19Þ

Followed by the moment function in (20):

M½z� ¼ z 0F3 ;
6

5
;
7

5
;
8

5
;� 1

625
z5b5

� �

þ
b10z11

0F3 ; 16
5
; 17

5
; 18

5
;� 1

625
z5b5

� �

3459456

� 1

6
a0b

5z3
0F3 ;

7

5
;
8

5
;
9

5
;� 1

625
z5b5

� �

þ
a0b

10z8
0F3 ; 12

5
; 13

5
; 14

5
;� 1

625
z5b5

� �

12096

� 1

12
a1b

6z4
0F3 ;

8

5
;
9

5
;
11

5
;� 1

625
z5b5

� �

þ
a1b

11z9
0F3 ; 13

5
; 14

5
; 16

5
;� 1

625
z5b5

� �

57024

�
5b5z6

0F3 ; 11
5
; 12

5
; 13

5
;� 1

625
z5b5

� �

1008
;

ð20Þ

where a0 and a1 are functions provided by Eqs. (11)

and (12). The shear force function is calculated by the

third derivative of the displacement function, or as

Eq. (21):

Q½z� ¼ EpIp
d3y

dz3
ð21Þ

2.1 The Proposed Generalized Miche Model

The generalized Miche model is provided by Eq. (22):

EpIp
d4y

dz4
þ nhz

ky ¼ 0 ð22Þ

where Ep = pile Young modulus, Ip = pile moment of

inertia, nh = proportional constant for the horizontal

soil reaction coefficient, E = soil Young modulus and

positive rational k. The solution of Eq. (22) for k[ 1

follows a similar power series resolution procedure

applied to obtain the analytical solution when k ¼ 1.

Miche’s generalized equation corresponds to the

power function as by Matlock and Reese (1961a) as

Kh ¼ kzn. The general solution of Eq. (22) for an

exponent k ¼ n is provided by Eq. (23):

y½z� ¼ c1 0F3 ;1 � 3

nþ 4
; 1 � 2

nþ 4
; 1 � 1

nþ 4
;� znþ4b5

ðnþ 4Þ4

 !

þ c2ðnþ 4Þ�
4

nþ4zb
5

nþ4
0F3

;1 � 2

nþ 4
; 1 � 1

nþ 4
; 1 þ 1

nþ 4
;� znþ4b5

ðnþ 4Þ4

 !

þ c3ðnþ 4Þ�
8

nþ4z2b
10
nþ4

0F3

;1 � 1

nþ 4
; 1 þ 1

nþ 4
; 1 þ 2

nþ 4
;� znþ4b5

ðnþ 4Þ4

 !

þ c4ðnþ 4Þ�
12
nþ4z3b

15
nþ4

0F3

;1 þ 1

nþ 4
; 1 þ 2

nþ 4
;þ1 þ 3

nþ 4
;� znþ4b5

ðnþ 4Þ4

 !

ð23Þ

where c1, c2, c3 and c4 are constants to be determined

according to pile boundary conditions.

2.2 The Miche Fractional Model

The fractional Miche model is more generalized than

Eq. (1), since the term of the fourth derivative will be

replaced by any real and positive exponent. The

equation has the following form:

EpIp
day

dza
þ nhz

ny ¼ 0; ð24Þ

where 3\a� 4 and n the exponent of the proportional

constant horizontal soil reaction coefficient.

3 Experimental Tests

Experimental field trials were performed to calibrated

the results, and they were performed in order to clarify

the behavior of single piles subjected to horizontal top
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loading through horizontal loading tests. Laboratory

and in situ tests were performed in the experimental

Site at Unicamp, for geotechnical characterization,

with the objective of calibration the analytical models

developed in this study.

3.1 Experimental Field Geology

The geological–geotechnical profile and the average

parameters for each soil layer were previously

obtained through laboratory tests performed by Gon

(2011). The average soil profile parameters for the

layers were obtained by average tests of seven SPT

and three CPT, reaching impenetrable percussion,

which is summarized in the Table 1.

According to Gon (2011), an average soil profile

was developed for the Experimental site subsoil where

the averages of each parameter, standard deviation and

coefficient of variation were determined. The best

result among the values of the coefficient of variability

between parameters was used to define the layers.

Garcia (2015) defines an average soil profile, provided

in the table shown in Table 1.

3.2 Lateral Load Test

Preparation of the tests followed the standard recom-

mendations of D3966 (ASTM 2013), which provides a

test method for deep foundations under lateral loads.

Test loadings were carried out on bored piles of D ¼
300 mm and length L ¼ 5 m, and an 80 mm aluminum

tube was placed inside the pile to read the inclinome-

ter. These piles were made with use of a helical auger

connected to a metal rod attached to a truck. The piles

was fully reinforced along their length, where 6

longitudinal 10 mm diameter CA-50 steel bars and

5 mm diameter CA-50 steel stirrups were placed every

15 cm. The lateral loading test on the pile followed the

scheme shown in Fig. 3, where the reaction was

caused by a three-pile block, the hydraulic jack for

load application, the displacement transducers

(LVDT) and the inclinometers to measure displace-

ment along depth.

Maximum load occurred at 49 kN with a displace-

ment of 14.10 mm, the graph in Fig. 4 shows the curve

load versus load test displacement. In the laterally

loaded piles design, the performance of the lateral

loading test is defined as a ultimate load. However, for

the design of a pile under lateral loading and deflection

prediction along the depth, it was used the allowable

load which is the ultimate load divided by the safety

factor. From the results of the load test, it was possible

to obtain the load versus displacement curve (Fig. 5).

The readings with the inclinometer allowed to

obtain the variation of the horizontal displacements in

depth. The results obtained are presented as a graph in

Fig. 5 indicating the incremental and cumulative

variation of the displacements in relation to the pile

depth, for each load stage in the horizontal loading

test.

3.3 Modulus of Subgrade Reaction Soil

The concept of the modulus of horizontal reaction of

the soil (K) defined as the relationship between the soil

reaction (in units of force applied along the pile

Table 1 Soil classification by SPT and CPT test

Depth (m) Nspt qc (MPa) fs (MPa) Rf (%) Robertson (1990) Vos (1982) SUCS

1 2 2.4 0.119 4.9 Silty clay and clayey silt Clay MH

2 4 1.4 0.035 2.5 Silty sand and silt Silt ML

3 4 1.4 0.038 2.8 Silty sand and silt Silt ML

4 5 1.8 0.050 2.8 Silty sand and silt Silt ML

5 6 2.3 0.064 2.8 Silty sand and silt Silt ML

6 6 2.5 0.077 3.1 Silty sand and silt Clay ML

7 7 3.2 0.090 2.9 Silty sand and silt Silt ML

8 8 3.0 0.104 3.5 Silty sand and silt Clay ML

9 24 2.1 0.126 6.0 Clay Clay MH

10 36 5.8 0.173 3.0 Silty sand and silt Silt MH
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length) and the corresponding displacement,

Van Impe and Reese (2010), with Eq. (25):

K ¼ P

y
ð25Þ

where K = modulus of horizontal reaction ðFL�2Þ; p =

applied force ðFL�1Þ; and y = horizontal displacement

(L).

For pure sand, the Young’s modulus increases

(approximately) linearly with depth. Therefore, the

soil reaction to the load applied to the pile is assumed

to increase linearly with depth

K ¼ nhz ð26Þ

where nh = constant horizontal reaction subgrade soil

ðFL�3Þ; and z = depth (L).

The modulus horizontal reaction is not a soil

parameter, but that it depends on soil resistance and

pile deflection (Van Impe and Reese 2010).

According to Van Impe and Reese (2010) for a

given soil profile, the soil-reaction modulus is influ-

enced intrinsically by the following variables: pile

type and flexural stiffness, short or long term, type

loading, pile geometry, pile installation procedure.

Several researchers have studied the behavior of the

coefficient of horizontal reaction such as: Biot,

Terzaghi, Veisic, Vlassov, Bowles, Selvadurai and

Fig. 3 Lateral loading test scheme

Fig. 4 Result the lateral loading test
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others, but most formulas are based on soil and pile

elasticity module, Possion coefficient, stiffness at

flexion but few models take into account the horizontal

load and deflection of the pile. Equations that depend

on the load, and some geotechnical parameters are

found in the work Phanikanth et al. (2013), in this

paper presented an equation in this way that will have

an experimental adjustment with in-situ data in

relation to the average values in the case of the sands

as a function of the specific weight and angle of

friction and for clay soils of specific weight and

cohesion, but depending on the load or maximum

displacement at the top of the pile.

According to Matlock and Reese (1961a), it is not

possible to determine a single value for the constant

horizontal subgrade reaction ðnhÞ because the lateral

load test is a load versus non-linear displacement

curve. In the paper of Matlock and Reese (1961a), for

isolated piles, an interval is determined for y0, from 6

to 12 mm, to find the nh the arithmetic average is

calculated. Alizadeh and Davisson (1970) were the

first to present the results of showing a graph of the

variation of the horizontal reaction coefficient on the y

axis and y0 displacement, of lateral load tests on sandy

soil and used a variation of 6.35–12.7 mm to

determine nh. Matlock (1970) used a range of 6–

12 mm for the determination of nh. All of these studies

relate the constant horizontal subgrade reaction of the

soil to the data of the lateral loading test for the pile in

a given soil, thus having the horizontal reaction

coefficient of the soil pile set with the displacement

and load limit, which in most tests of side load the

displacement at the top is less than 5%D, where D is

the diameter.

The constant horizontal subgrade reaction of the

isolated pile can be determined mathematically,

according to Matlock and Reese (1961a) with the

variations of y0 between 4 and 8 mm is determined

numerically, replacing these values, respectively, in

the Eq. 27, where nhð4Þ ¼ 29:29 MN=m3 and

nhð8Þ ¼ 15:98 MN=m3, making the arithmetic aver-

age result nh ¼ 22:64 MN=m3. The horizontal reac-

tion coefficient of the soil of the isolated pile, with the

variations of y0 between 6 and 12 mm is 13.72 MN/

m3.

The constant horizontal subgrade reaction of the

soil ðnhÞ for the isolated pile varies with the values of

the displacement y0, according to the data of the

inclinometer, given by Fig. 6, was adjusted by the

Fig. 5 Inclinometer reading

according to depth
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method of least squares, in the graph of Fig. 6, it has

the following expression:

nhðy0Þ ¼ 161:15e�0:95y0 � 2:45y0 þ 35:52 ð27Þ

An equation to calculate the horizontal reaction

coefficient of the soil nh was adjusted, according to the

equation of Phanikanth et al. (2010), and using the

method of least squares, for average data of the

experimental test, such that:

nh ¼
560C/c1:5

ffiffiffiffiffiffiffiffiffiffiffiffi

EpIpD
p

H
ð28Þ

where C/ ¼ 3 � 10�5ð1; 316Þ/, /—friction angle, c -

specific weight, H - load, EpIp—pile flexural stiffness

and D—diameter pile.

According data Table 2 the average value of the

specific gravity of the soil is approximately

14:5 kN=m3 and the friction angle is 22:4�, so the

value of the constant horizontal subgrade reaction soil

for a load 49 kN is replacing in the Eq. 28,

nh ¼ 13:52 kN=m3. A graph to represent the Eq. (28)

is given in Fig. 7.

A new equation for the constant horizontal sub-

grade reaction is presented with the CPT in-situ test

data, through a least squares adjustment of the

parameters of the cone resistance qc and the sleeve

friction resistance fs in relation to the friction angle ð/Þ
and specific weight ðcÞ, according to Robertson and

Cabal (2015).

/ð�Þ ¼ 21:16 þ log
q1:4
c

f 1:76
s

ð29Þ

cðkN=m3Þ ¼ 23:71 þ log
f 0:55
s

q0:45
c

ð30Þ

Replacing the Eqs. (29) and (30) in the Eq. (28), and

using the expansion of powers, result

nhðkN=m3Þ ¼
0:43q0:38

c e
6:53q0:025

c

f 0:02
s

ffiffiffiffiffiffiffiffiffiffiffiffi

EpIpD
p

f 0:18
s H

ð31Þ

where H—load and EpIp—pile flexural stiffness.

The Eq. (31) is the relationship between the soil

parameters and the horizontal soil reaction constant

for the experimental site data, for a general expression

was done a retro-analysis of the load tests and have the

geotechnical parameters of the laboratory tests and the

CPT in-situ tests.

4 Results

The analytical solutions obtained in this paper will first

be compared with Miche’s method (1930) for dis-

placement, moment and shear. It will also analyze the

relation of top displacement as a function of depth and

characteristic stiffness. Afterwards, the generalized

Miche model proposed for Kh ¼ kzn, where n ¼
1; 2; 3; 4; 5; 6; 7 and 8, is compared to the functions

of displacement and moment, and an equation to

Fig. 6 Constant horizontal

reaction subgrade soil of the

single pile with fit least

square
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calculate the maximum moment is proposed. The

analytical solution is compared with the literature

results, and lastly the model is calibrated with

measurement data from the inclinometer of an bored

pile and pipe.

4.1 Miche Analytical Solution and Model

Miche’s (1930) solution does not present the method

used to solve Eq. (1), nor does it explain the

displacement function along depth. With the contin-

uous and exact displacement function, displacements

can be determined at any point along the pile, thus

leading to better calibration with the inclinometer data

along the length. Figure 8 shows the displacements

expressed in Eq. (16), which is then compared to the

results of Miche (1930) in the graph of Fig. 8.

The exact analytical moment function is shown in

Eq. (20) and represented in the graph of Fig. 9 in

comparison with Miche’s model (1930). The analyt-

ical model has a good numerical agreement for values

smaller than z� 4b, because Miche’s model (1930)

includes an error related to the analytical model.

The shear function is represented in the graph of

Fig. 10 comparing the analytical shear function with

Miche’s model (1930), an error in the points above

z� 2:5 can be seen.

For different depths it is possible to observe a

variation of displacement depending on relative stiff-

ness ðbÞ, but when the pile length is greater than 9 m, it

no longer influences top displacement, this can be seen

in the graph of Fig. 11.

Table 2 General properties

at Unicamp experimental

site, Gon (2011)

Deph (m) Nspt SUCS cs (kN/m3) w (%) Suction (kPa) c0 (kPa) /0 Es (MPa) k0

1 2.0 MH 14.1 28.3 43.0 7.4 22� 13.8 0.6

2 3.9 ML 14.2 27.9 55.0 7.9 21� 11.4 0.6

3 4.0 ML 14.0 28.0 39.0 11.6 22� 8.5 0.6

4 5.3 ML 14.4 25.5 85.0 5.8 23� 11.5 0.6

5 6.0 ML 15.5 26.2 – 24.0 21� 9.9 0.6

6 6.3 ML 15.3 26.1 110.0 42.4 22� 20.0 0.6

7 6.9 ML 15.4 28.3 20.0 41.9 22� 10.9 0.6

8 7.9 ML 15.2 32.3 – 26.4 22� 11.0 0.6

9 23.6 MH 15.2 40.6 – – – –

Fig. 7 Constant horizontal reaction subgrade nh versus load H

Fig. 8 Analytical displacement function
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4.2 Comparison with Literature Results

Liang et al. (2014) obtained a simplified analytical

solution by means of an integral Fourier–Laplace

transform for long laterally loaded piles on a soil with

reaction coefficient increasing linearly with depth, but

the model shows one discontinuity, in that the

analytical model function is continuous across the

length of the pile, the graph shown in Fig. 12

compares the solutions.

Fig. 9 Exact analytical moment function

Fig. 10 Exact analytical shear function and Miche (1930)

Fig. 11 Top displacement with ðz ¼ 0Þ with stiffness variation

ðbÞ

Fig. 12 Comparison between analytical model and Liang et al.

(2014)
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4.2.1 Generalized Miche Model

As for the generalized Miche model, the variation of

the displacement and moment functions with values

up to n ¼ 8 will be analyzed. The displacement

functions increase from n ¼ 1 to n ¼ 4, and then

decrease to values from n ¼ 5 to n ¼ 8, and even with

different values displacements have similar values, as

can be seen in the graphs of Figs. 13 and 14.

The moment functions raise when n grows, from

n ¼ 1 to n ¼ 4, Fig. 15. The application point, starting

from the maximum moment, increases the values n ¼
1 to n ¼ 4, and after n ¼ 6 to n ¼ 8, it presents similar

values (Fig. 16). The maximum values of the moment

functions of n ¼ 1, n ¼ 2, n ¼ 3, n ¼ 4, n ¼ 5, n ¼ 6,

n ¼ 7 and n ¼ 8 were determined numerically, as well

as their application point in Table 3. It was divided

into two sections for adjustment, and so it has two

functions for maximum moment. Afterwards, a non-

linear fit by the least squares method Ayyub and

McCuen (2015) for n ¼ 1 to n ¼ 5, where it has the

following fit equation showing in 32.

Mmax ¼ H

b
0:269 ln ð17:89nÞ ð32Þ

where n is the power of the generalized Miche model

so that 0\n\6; Mmax is maximum moment, H is top

loading and b is the inverse of the ground pile’s

relative stiffness. The maximum moment of the

moment functions for values from n ¼ 6 to n ¼ 8 is

Mmax ¼ H

b
ð0:9702 þ 0:06485n� 0:00365n2Þ ð33Þ

where n is the power of the generalized Miche model

such that 5\n\9; Mmax is the maximum moment,

H is top loading and b is the inverse of the ground pileFig. 13 Comparison of Miche’s analytical displacement

functions, with n ¼ 1, n ¼ 2, n ¼ 3 and n ¼ 4

Fig. 14 Comparison of Miche’s analytical displacement

functions, with n ¼ 1, n ¼ 5, n ¼ 6, n ¼ 7 and n ¼ 8

Table 3 Maximum

moments and application

points for each value of n

n z
b

Mmax

H=b

1 1.3308 0.7727

2 1.4287 0.9648

3 1.4718 1.0822

4 1.4864 1.1546

5 1.4863 1.1998

6 1.478 1.2279

7 1.467 1.2453

8 1.453 1.2554

123

Geotech Geol Eng



relative stiffness. The application points and the

maximum moments were determined by numerical

search of the extreme points of the moment functions,

summarized in Table 3.

4.3 Constant Horizontal Subgrade Reaction

Comparing the result of the constant horizontal

subgrade reaction of the soil, in the graph of Fig. 17,

obtained from the lateral loading test with the

Eq. (31), it is noted that the curves have approximate

results in the displacement range between 6 and

12 mm.

The difference in inflection in the graphs, in

Fig. 17, slightly changes the results of nh, since the

authors’ Matlock and Reese (1961b) are for values

than 4 mm, in the Table 4. The values of the constant

horizontal subgrade reaction soil were numerically

determined.

The constant horizontal subgrade reaction of the

soil is determined by the methodology of Matlock and

Reese (1961b) and Alizadeh and Davisson (1970) with

that is determined through the Eq. (31), had close

values thus showing the good agreement of the results

of the lateral load test and the CPT in situ test.

4.4 Model Calibration

For calibration of the analytical model, was used data

from the inclinometer in a bored pile. During data

analysis, it was considered the displacement of each

foundation on the y ¼ Y axis and the depth on the

z ¼ Z axis according to the shape of Fig. 18.

Albuquerque et al. (2019) conducted a lateral

loading test on a belled caisson, 80 cm in diameter

and 9 m in length with inclinometer measuring along

depth a load of H ¼ 180 kN. Miche’s analytical model

from Eq. (1), with the following conditions

EpIpy
000ðzÞ ¼ H, EpIpy

00ðzÞ ¼ 0, y00ð0Þ ¼ 0, y00ð9Þ ¼ 0

and y000ð9Þ ¼ 0, gives the exact solution of the

displacement equation as a function of depth in the

graph shown in Fig. 19. The analytical model for n ¼
1 had good agreement with the experimental results.

Since the ultimate load for the pile was 180 kN, this

analytical model does not behave well with values

close to the ultimate, since the plasticization of the soil

and concrete are not taken into account. However, for

design values one can predict the behavior of the deep

Fig. 15 Comparison of Miche’s analytical moment function,

with n ¼ 1, n ¼ 2, n ¼ 3 and n ¼ 4

Fig. 16 Comparison of Miche’s analytical moment functions,

with n ¼ 1, n ¼ 5, n ¼ 6 n ¼ 7 and n ¼ 8
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foundation along depth without the use of commercial

computer software.

From the values obtained from the the load test on

the bored pile (D ¼ 30 cm, L ¼ 5 m) it were obtained

the constant horizontal subgrade reaction soil nh ¼
13:7 MN=m2 with instrumentation by inclinometers

(Fig. 4) and load testing (Fig. 5) in the experimental

field at Unicamp, where the results of the inclinome-

ters are compared with the analytical model for some

loading stages shown in Figs. 20, 21 and 22. The

analytical model had good agreement with the three

loading stages, since the pile failure occurred at

49 kN. Then, it has the efficiency of the analytical

model for sizing of foundations when having the pile’s

lateral loading test. Furthermore, this review presents

the calibration of the Miche analytical model with data

from the inclinometer of the lateral load test. That is,

for each set of deflection versus depth values and

cutting parameters, the constant horizontal subgrade

reaction is determined using the least squares method

applied to the Miche displacement analytical solution.

5 Conclusion

The problem of piles with horizontal top loading was

solved analytically by Taylor series, wherein gener-

alized hypergeometric functions were the solution.

The solution for displacement, moment and shear is

compared with the problem numerically solved by

Miche (1930). A new equation for the top displace-

ment calculation was found, and displacement was

shown to also depend on pile displacement. In the case

of the generalized analytical model, a new equation

was found to determine the maximum moment and

point of application for different forms of the

horizontal soil reaction coefficient. The analytical

model, unlike Miche’s numerical model (1930), is

Fig. 17 Comparison between constant horizontal subgrade reaction: lateral load test and Eq. (31)

Table 4 Comparison between methodology, to determine nh

yo (mm) nh (load test) (MN=m3) nhðqcÞ (MN=m3) nhðAveÞ (load test) (MN=m3) nhðAveÞðqcÞ (MN=m3)

4 29.29 20.53 – –

8 15.98 13.84 20.43 17.18

6 21.34 16.15 – –

12 6.10 14.38 13.72 15.27
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continuous and can be used for calibration in pile

dimension problems, with measurements of field

inclinometers when performing lateral loading tests.

The analytical model adjusted the inclinometer mea-

surements of an bored pile very well, thus showing

good agreement with the experimental data. The

proposal for a formulation to obtain the nh curve based

on the data from the CPT test is promising and to be

validated it must have other lateral load tests. For

future studies, Miche’s fractional model should be

solved and compared with the experimental data, since

Fig. 18 Displacement according to inclinometer measurement

Fig. 19 Comparison between analytical and experimental

models

Fig. 20 Comparison between analytical, model and inclinome-

ter data

Fig. 21 Comparison between analytical, model and inclinome-

ter data
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the analytical solution is given in terms of the Mittag–

Leffler functions derived from fractional calculus.

Appendix

By substituting Eq. (6) for Eq. (1), and developing the

sum to n ¼ 4 in the first part:

X

1

n¼4

nðn� 1Þðn� 2Þðn� 3Þanzn�4

þ b5
X

1

n¼0

anz
nþ1 ¼ 0

ð34Þ

Turning n ! nþ 4 in the first installment of the

equation and n ! n� 1 for the second installment, it

has:

X

1

n¼0

ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þanþ4z
n

þ b5
X

1

n¼1

an�1z
n ¼ 0

ð35Þ

Rearranging this, we have

1 � 2 � 3 � 4a4 þ
X

1

n¼1

½ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þ

anþ4 þ b5an�1�zn

ð36Þ

So that a4 ¼ a9 ¼ � � � ¼ a5nþ4 ¼ 0, and a0, a1, a2 and

a3 are arbitrary, so the recurrence relationship is

provided by

anþ4 ¼ � b5an�1

ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þ :
ð37Þ

Considering n ¼ 1; 2; 3; 4, in Eq. (37), it has

a5 ¼ �b5a0

2 � 3 � 4 � 5
;

a6 ¼ �b5a1

3 � 4 � 5 � 6
;

a7 ¼ �b5a2

4 � 5 � 6 � 7
;

a8 ¼ �b5a3

5 � 6 � 7 � 8
:

Furthermore, for n ¼ 6; 7; 8; 9, in Eq. (37), and using

the previous equations:

a10 ¼ b10a0

2 � 3 � 4 � 5 � 7 � 8 � 9 � 10

a11 ¼ b10a1

3 � 4 � 5 � 6 � 8 � 9 � 10 � 11

a12 ¼ b10a2

4 � 5 � 6 � 7 � 9 � 10 � 11 � 12

a13 ¼ b10a3

5 � 6 � 7 � 8 � 10 � 11 � 12 � 13

By applying the same process to infinite values of n, it

has the behavior of a generalized hypergeometric

function, as defined in Eq. (3). The general solution of

Eq. (2) is achieved by substituting the terms an found

in the Taylor series given by Eq. (3), therefore,

Fig. 22 Comparison between analytical, model and inclinome-

ter data
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y½z� ¼ a0 1 � ðb5z5Þ1

2 � 3 � 4 � 5
þ ðb5z5Þ2

2 � 3 � 4 � 5 � 7 � 8 � 9 � 10

 

� ðb5z5Þ3

2 � 3 � 4 � 5 � 7 � 8 � 9 � 10 � 12 � 13 � 14 � 15
þ � � �

!

þ a1zb 1 � ðb5z5Þ1

3 � 4 � 5 � 6
þ ðb5z5Þ2

3 � 5 � 6 � 8 � 9 � 10 � 11

 

� ðb5z5Þ3

3 � 4 � 5 � 6 � 8 � 9 � 10 � 11 � 13 � 14 � 15 � 16
þ � � �

!

a2z
2b2 1 � ðb5z5Þ1

4 � 5 � 6 � 7
þ ðb5z5Þ2

4 � 5 � 6 � 7 � 9 � 10 � 11 � 12

 

� ðb5z5Þ3

4 � 5 � 6 � 7 � 9 � 10 � 11 � 12 � 14 � 15 � 16 � 17
þ � � �

!

a3z
3b3 1 � ðb5z5Þ1

5 � 6 � 7 � 8
þ ðb5z5Þ2

5 � 6 � 7 � 8 � 10 � 11 � 12 � 13

 

� ðb5z5Þ3

5 � 6 � 7 � 8 � 10 � 11 � 12 � 13 � 15 � 16 � 17 � 18
þ � � �

!

ð38Þ
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